复合函数y=ln(8x-7)+√(x^2-1)的性质归纳

 时间:2026-02-15 10:37:13

1、      介绍函数y=ln(2x-1)+√(x^2-1)的定义域、单调性、凸凹性等性质,并求解函数的单调和凸凹区间。

复合函数y=ln(8x-7)+√(x^2-1)的性质归纳

2、     得到根据对数函数和根式函数的定义要求,即可自变量满足的方程组,进而计算出函数的定义域。

复合函数y=ln(8x-7)+√(x^2-1)的性质归纳

3、       由复合函数单调性判断原理,即同增为增,异减为减,来分析本题对数函数和二次根式的两个和函数的单调性。

复合函数y=ln(8x-7)+√(x^2-1)的性质归纳

4、计算函数的二阶导数,根据二阶导数的符号,可知函数在定义域上为凸函数。

复合函数y=ln(8x-7)+√(x^2-1)的性质归纳

  • 二次与对数的复合函数y=ln(8x^2+4x+10)导数计算
  • 函数y=ln(2x-1)+√(x^2-1)的性质
  • 导数知识分析函数y=ln(10x-9)+√(x^2-1)的性质
  • 函数y=ln(8x^2+4x+1)的导数计算
  • 二次与对数的复合函数y=ln(8x^2+4x+9)导数计算
  • 热门搜索
    我的世界南瓜派怎么做 脚扭伤怎么办 羊毛衫怎么洗 翡翠手镯怎么挑 干瞪眼怎么玩 平方怎么计算 百香果怎么种植 肾积水怎么治疗 油耳朵是怎么回事 word怎么删除分页符